$\mu = 0.95 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.092$

 $0.26 \times 0.20 \times 0.12 \text{ mm}$

17083 measured reflections

4215 independent reflections 3364 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1,10-phenanthroline)cobalt(II) bis(trichloroacetate)

Li-Min Li,^a* Yu-Feng Li,^a Li Liu^a and Zeng-Hui Zhang^b

^aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: ffjian2008@163.com

Received 15 May 2011; accepted 20 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.142; data-to-parameter ratio = 16.3.

In the title complex, $[Co(C_{12}H_8N_2)_3](C_2Cl_3O_2)_2$, the Co^{II} ion lies on a twofold rotation axis and is coordinated by six N atoms from three bis-chelating 1,10-phenanthroline ligands in a distorted octahedral environment. The crystal structure is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For background to metal-organic framework coordination polymers, see: Chen *et al.* (2001); Fang *et al.* (2005). For a related structure, see: Harding *et al.* (2008).

Experimental

Crystal data

$[Co(C_{12}H_8N_2)_3](C_2Cl_3O_2)_2$	a = 18.367 (4) A
$M_r = 924.28$	b = 10.753 (2)
Monoclinic, $C2/c$	c = 19.020 (4) Å

$\beta = 100.94 \ (3)^{\circ}$
$V = 3688.2 (13) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.837, T_{\rm max} = 0.923$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.048 & 258 \text{ parameters} \\ wR(F^2) &= 0.142 & H\text{-atom parameters constrained} \\ S &= 0.89 & \Delta\rho_{\text{max}} = 0.81 \text{ e } \text{ Å}^{-3} \\ 4215 \text{ reflections} & \Delta\rho_{\text{min}} = -0.45 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1	
Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9A\cdotsO1^{i}$	0.93	2.54	3.401 (3)	154
$C10-H10A\cdots O2^{ii}$	0.93	2.35	3.120 (3)	140
$C13-H13A\cdots O1^{iii}$	0.93	2.28	3.004 (3)	134
$C14-H14A\cdots O1^{iv}$	0.93	2.60	3.455 (3)	154
$C15-H15A\cdots O2^{iv}$	0.93	2.56	3.266 (3)	133
Symmetry codes: (i) $-x$	$+\frac{1}{2}, -v + \frac{1}{2}, -z$	z; (ii) $-x, -y, -y$	$-z$; (iii) $-x + \frac{1}{2}, y$	$-\frac{1}{2}$, $-z + \frac{1}{2}$; (iv)

 $x, -y + 1, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2008B30).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5253).

References

- Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). *Science*, **291**, 1021–1023.
- Fang, Q. R., Zhu, G. S., Xue, M., Sun, J. Y., Wei, Y., Qiu, S. & Xu, R. R. (2005). Angew. Chem. Int. Ed. 44, 3845–3848.
- Harding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m973 [doi:10.1107/S160053681102410X]

Tris(1,10-phenanthroline)cobalt(II) bis(trichloroacetate)

L.-M. Li, Y.-F. Li, L. Liu and Z.-H. Zhang

Comment

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange, adsorption, catalytic and magnetic properties (Chen *et al.*, 2001; Fang *et al.*,2005). As part of our search for new complexes of this type, we synthesized the title compound and report its crystal structure herein.

The molecular structure of the title complex is shown in Fig. 1. The Co^{II} ion lies on a twofold rotation axis and is coordinated by six N atoms of three bis-chelating 1,10-phenanthroline ligands in a distorted octahedral environment. The Co—N bond lengths are in agreement with those reported for a related complex (Harding *et al.*, 2008). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Experimental

The title compound was obtained by adding 1,10-phenanthroline (3 mmol) dropwise to a solution of cobalt(II) trichloroacetic acid (1 mmol) in ethanol (20 ml). The solution was stirred for 1 h at room temperature. After a few days block-shaped crystals were formed from the yellow solution.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids (symmetry code: (A) -x, y, -z + 1/2). Only the unique anion is shown.

Tris(1,10-phenanthroline)cobalt(II) bis(trichloroacetate)

 Crystal data

 $[Co(C_{12}H_8N_2)_3](C_2Cl_3O_2)_2$
 $M_r = 924.28$
 $M_r = 924.28$

 D_x = 1.665 Mg m^{-3}

 Monoclinic, C2/c

 Molecting

 Hall symbol: -C 2yc

 a = 18.367 (4) Å

 $\theta = 3.3-27.5^{\circ}$

b = 10.753 (2) Å	$\mu = 0.95 \text{ mm}^{-1}$
c = 19.020 (4) Å	T = 293 K
$\beta = 100.94 \ (3)^{\circ}$	Block, yellow
$V = 3688.2 (13) \text{ Å}^3$	$0.26\times0.20\times0.12~mm$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	4215 independent reflections
Radiation source: fine-focus sealed tube	3364 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.092$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
φ and ω scans	$h = -23 \rightarrow 23$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.837, T_{\max} = 0.923$	$l = -22 \rightarrow 24$
17083 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H-atom parameters constrained
<i>S</i> = 0.89	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4215 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
258 parameters	$\Delta \rho_{max} = 0.81 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Z

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

У

х

 $U_{iso}*/U_{eq}$

Col	0.0000	0.08051 (4)	0.2500	0.01371 (15)
N1	0.08711 (11)	0.05924 (18)	0.19106 (10)	0.0166 (4)
N2	-0.04713 (11)	-0.05011 (17)	0.16840 (10)	0.0171 (4)
N3	0.05538 (10)	0.23619 (17)	0.30672 (9)	0.0139 (4)
C1	0.15367 (13)	0.1115 (2)	0.20262 (13)	0.0219 (5)
H1A	0.1671	0.1614	0.2429	0.026*
C2	0.20463 (14)	0.0959 (2)	0.15766 (14)	0.0244 (5)
H2A	0.2511	0.1330	0.1686	0.029*
C3	0.18537 (14)	0.0252 (2)	0.09727 (13)	0.0230 (5)
H3A	0.2174	0.0175	0.0651	0.028*
C4	0.11654 (13)	-0.0354(2)	0.08449 (12)	0.0199 (5)
C5	0.06900 (12)	-0.0155 (2)	0.13273 (11)	0.0163 (4)
C6	-0.00237 (13)	-0.0750(2)	0.12096 (12)	0.0158 (4)
C7	-0.02363 (13)	-0.1525 (2)	0.06160 (12)	0.0209 (5)
C8	0.02684 (15)	-0.1718 (2)	0.01384 (13)	0.0264 (5)
H8A	0.0134	-0.2243	-0.0253	0.032*
С9	0.09337 (15)	-0.1153 (3)	0.02451 (13)	0.0260 (5)
H9A	0.1248	-0.1286	-0.0077	0.031*
C10	-0.09434 (13)	-0.2060(2)	0.05130(13)	0.0234 (5)
H10A	-0.1101	-0.2593	0.0129	0.028*
C11	-0.13996 (13)	-0.1790(2)	0.09837 (14)	0.0239 (5)
H11A	-0.1876	-0.2120	0.0918	0.029*
C12	-0.11401 (13)	-0.1013 (2)	0.15618 (13)	0.0209 (5)
H12A	-0.1453	-0.0843	0.1881	0.025*
C13	0.11155 (12)	0.2351 (2)	0.36144 (12)	0.0179 (5)
H13A	0.1308	0.1586	0.3786	0.022*
C14	0.14369 (13)	0.3426 (2)	0.39495 (12)	0.0208 (5)
H14A	0.1832	0.3371	0.4335	0.025*
C15	0.11645 (13)	0.4560 (2)	0.37044 (12)	0.0217 (5)
H15A	0.1360	0.5285	0.3931	0.026*
C16	0.05858 (12)	0.4615 (2)	0.31049 (12)	0.0173 (5)
C17	0.02949 (12)	0.3489 (2)	0.28041 (11)	0.0149 (4)
C18	0.02748 (14)	0.5754 (2)	0.27896 (14)	0.0225 (5)
H18A	0.0457	0.6508	0.2989	0.027*
Cl1	0.18800 (5)	0.41813 (7)	0.18548 (4)	0.0414 (2)
Cl2	0.06670 (4)	0.51120 (9)	0.07856 (5)	0.0454 (2)
C13	0.17181 (4)	0.67933 (6)	0.15928 (4)	0.0368 (2)
01	0.25779 (11)	0.59450 (19)	0.05738 (11)	0.0341 (5)
02	0.19590 (11)	0.41976 (17)	0.02240 (10)	0.0292 (4)
C20	0.16126 (14)	0.5325 (2)	0.11741 (13)	0.0245 (5)
C19	0.21116 (12)	0.5134 (2)	0.05881 (12)	0.0215 (5)
				~ /
Atomic displacement	<i>it parameters ($Å^2$)</i>			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0146 (2)	0.0140 (2)	0.0126 (2)	0.000	0.00274 (17)	0.000
N1	0.0169 (9)	0.0178 (9)	0.0155 (9)	-0.0009 (7)	0.0041 (8)	-0.0021 (7)
N2	0.0195 (9)	0.0134 (9)	0.0174 (9)	0.0003 (7)	0.0010 (8)	-0.0002 (7)

supplementary materials

N3	0.0144 (8)	0.0157 (9)	0.0111 (8)	-0.0005 (7)	0.0013 (7)	-0.0017 (6)
C1	0.0217 (12)	0.0256 (12)	0.0189 (12)	-0.0045 (10)	0.0054 (10)	-0.0047 (9)
C2	0.0184 (11)	0.0283 (13)	0.0276 (13)	-0.0051 (10)	0.0071 (10)	-0.0035 (10)
C3	0.0237 (12)	0.0279 (13)	0.0198 (12)	0.0033 (10)	0.0101 (10)	0.0014 (9)
C4	0.0246 (12)	0.0207 (11)	0.0153 (11)	0.0041 (9)	0.0060 (9)	0.0025 (8)
C5	0.0186 (10)	0.0160 (10)	0.0140 (10)	0.0028 (9)	0.0025 (9)	0.0009 (8)
C6	0.0180 (10)	0.0154 (10)	0.0132 (10)	0.0015 (8)	0.0009 (9)	0.0018 (8)
C7	0.0260 (12)	0.0181 (11)	0.0164 (11)	0.0019 (9)	-0.0018 (10)	-0.0018 (8)
C8	0.0363 (14)	0.0254 (13)	0.0174 (12)	0.0043 (11)	0.0047 (11)	-0.0051 (9)
C9	0.0323 (13)	0.0300 (13)	0.0179 (12)	0.0043 (11)	0.0104 (11)	-0.0027 (10)
C10	0.0255 (11)	0.0203 (11)	0.0204 (12)	-0.0014 (10)	-0.0059 (10)	-0.0024 (9)
C11	0.0206 (11)	0.0164 (12)	0.0318 (14)	-0.0016 (9)	-0.0022 (10)	0.0017 (9)
C12	0.0176 (11)	0.0179 (11)	0.0264 (13)	-0.0005 (9)	0.0023 (10)	0.0006 (9)
C13	0.0184 (10)	0.0208 (11)	0.0138 (11)	0.0038 (9)	0.0009 (9)	-0.0003 (8)
C14	0.0160 (10)	0.0305 (13)	0.0135 (10)	-0.0014 (9)	-0.0033 (9)	-0.0025 (9)
C15	0.0248 (12)	0.0210 (12)	0.0191 (11)	-0.0033 (10)	0.0041 (10)	-0.0047 (9)
C16	0.0149 (10)	0.0187 (11)	0.0184 (11)	-0.0006 (9)	0.0037 (9)	-0.0009 (8)
C17	0.0147 (10)	0.0169 (11)	0.0140 (10)	0.0009 (8)	0.0053 (9)	-0.0002 (8)
C18	0.0270 (12)	0.0141 (11)	0.0247 (12)	-0.0015 (9)	0.0007 (10)	-0.0019 (9)
Cl1	0.0599 (5)	0.0325 (4)	0.0382 (4)	0.0076 (3)	0.0255 (4)	0.0144 (3)
Cl2	0.0190 (3)	0.0604 (5)	0.0581 (5)	-0.0049 (3)	0.0110 (3)	-0.0155 (4)
C13	0.0469 (4)	0.0273 (4)	0.0337 (4)	0.0072 (3)	0.0007 (3)	-0.0071 (3)
01	0.0268 (10)	0.0393 (12)	0.0367 (11)	-0.0156 (8)	0.0074 (9)	-0.0009 (8)
O2	0.0271 (10)	0.0328 (10)	0.0277 (10)	-0.0036 (8)	0.0049 (8)	-0.0083 (7)
C20	0.0221 (11)	0.0250 (13)	0.0258 (13)	-0.0022 (10)	0.0033 (10)	-0.0008 (9)
C19	0.0148 (10)	0.0309 (13)	0.0176 (11)	-0.0020(9)	0.0001 (9)	0.0034 (9)

Geometric parameters (Å, °)

Co1—N1 ⁱ	2.1330 (19)	C8—H8A	0.9300
Co1—N1	2.1330 (19)	С9—Н9А	0.9300
Co1—N3	2.1411 (18)	C10—C11	1.368 (4)
Co1—N3 ⁱ	2.1411 (18)	C10—H10A	0.9300
Co1—N2	2.1497 (19)	C11—C12	1.391 (3)
Co1—N2 ⁱ	2.1497 (19)	C11—H11A	0.9300
N1—C1	1.325 (3)	C12—H12A	0.9300
N1—C5	1.359 (3)	C13—C14	1.396 (3)
N2—C12	1.326 (3)	С13—Н13А	0.9300
N2—C6	1.358 (3)	C14—C15	1.366 (3)
N3—C13	1.319 (3)	C14—H14A	0.9300
N3—C17	1.362 (3)	C15—C16	1.405 (3)
C1—C2	1.393 (3)	C15—H15A	0.9300
C1—H1A	0.9300	C16—C17	1.401 (3)
C2—C3	1.366 (4)	C16—C18	1.434 (3)
C2—H2A	0.9300	C17—C17 ⁱ	1.427 (4)
C3—C4	1.402 (3)	C18—C18 ⁱ	1.345 (5)
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C5	1.398 (3)	Cl1—C20	1.786 (3)

C4—C9	1.428 (3)	Cl2—C20	1.769 (3)
C5—C6	1.438 (3)	Cl3—C20	1.762 (3)
C6—C7	1.398 (3)	O1—C19	1.226 (3)
C7—C10	1.400 (3)	O2—C19	1.224 (3)
С7—С8	1.431 (3)	C20—C19	1.585 (3)
C8—C9	1.345 (4)		
N1 ⁱ —Co1—N1	167.69 (10)	С10—С7—С8	123.2 (2)
N1 ⁱ —Co1—N3	98.69 (7)	C9—C8—C7	121.2 (2)
N1—Co1—N3	90.95 (7)	С9—С8—Н8А	119.4
N1 ⁱ —Co1—N3 ⁱ	90.95 (7)	С7—С8—Н8А	119.4
N1—Co1—N3 ⁱ	98.69 (7)	C8—C9—C4	121.1 (2)
N3—Co1—N3 ⁱ	77.14 (10)	С8—С9—Н9А	119.4
N1 ⁱ —Co1—N2	94.01 (8)	С4—С9—Н9А	119.4
N1—Co1—N2	77.87 (7)	C11—C10—C7	119.2 (2)
N3—Co1—N2	164.22 (7)	C11—C10—H10A	120.4
N3 ⁱ —Co1—N2	93.40 (7)	C7—C10—H10A	120.4
N1 ⁱ —Co1—N2 ⁱ	77.87 (7)	C10-C11-C12	119.0 (2)
N1—Co1—N2 ⁱ	94.01 (8)	C10-C11-H11A	120.5
N3—Co1—N2 ⁱ	93.40 (7)	C12—C11—H11A	120.5
N3 ⁱ —Co1—N2 ⁱ	164.22 (7)	N2-C12-C11	123.7 (2)
N2—Co1—N2 ⁱ	98.40 (10)	N2	118.1
C1—N1—C5	117.5 (2)	C11—C12—H12A	118.1
C1—N1—Co1	128.87 (16)	N3—C13—C14	123.5 (2)
C5—N1—Co1	113.61 (15)	N3—C13—H13A	118.2
C12—N2—C6	117.3 (2)	C14—C13—H13A	118.2
C12—N2—Co1	129.10 (17)	C15—C14—C13	119.2 (2)
C6—N2—Co1	113.39 (15)	C15—C14—H14A	120.4
C13—N3—C17	117.65 (19)	C13—C14—H14A	120.4
C13—N3—Co1	128.03 (16)	C14—C15—C16	119.1 (2)
C17—N3—Co1	114.28 (14)	C14—C15—H15A	120.4
N1—C1—C2	123.6 (2)	C16-C15-H15A	120.4
N1—C1—H1A	118.2	C17—C16—C15	117.8 (2)
C2—C1—H1A	118.2	C17—C16—C18	118.5 (2)
C3—C2—C1	119.1 (2)	C15-C16-C18	123.8 (2)
C3—C2—H2A	120.4	N3—C17—C16	122.7 (2)
C1—C2—H2A	120.4	N3—C17—C17 ⁱ	117.15 (12)
C2—C3—C4	119.0 (2)	C16—C17—C17 ⁱ	120.20 (13)
С2—С3—Н3А	120.5	C18 ⁱ —C18—C16	121.32 (14)
C4—C3—H3A	120.5	C18 ⁱ —C18—H18A	119.3
C5—C4—C3	118.0 (2)	C16—C18—H18A	119.3
C5—C4—C9	119.2 (2)	C19—C20—Cl3	113.91 (17)
C3—C4—C9	122.7 (2)	C19—C20—Cl2	110.03 (16)
N1—C5—C4	122.6 (2)	Cl3—C20—Cl2	108.66 (14)
N1—C5—C6	117.7 (2)	C19—C20—Cl1	107.71 (17)
C4—C5—C6	119.6 (2)	Cl3—C20—Cl1	107.33 (13)

supplementary materials

N2—C6—C7 N2—C6—C5 C7—C6—C5 C6—C7—C10 C6—C7—C8 Symmetry codes: (i) <i>-x</i> , <i>y</i> , <i>-z</i> +1/2.	122.9 (2) 117.3 (2) 119.9 (2) 117.9 (2) 118.9 (2)		Cl2—C20—Cl1 O2—C19—O1 O2—C19—C20 O1—C19—C20		109.08 (14) 131.2 (2) 113.8 (2) 115.0 (2)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C9—H9A…O1 ⁱⁱ		0.93	2.54	3.401 (3)	154
C10—H10A····O2 ⁱⁱⁱ		0.93	2.35	3.120 (3)	140
C13—H13A…O1 ^{iv}		0.93	2.28	3.004 (3)	134
C14— $H14A$ ···O1 ^v		0.93	2.60	3.455 (3)	154
C15—H15A…O2 ^v		0.93	2.56	3.266 (3)	133

Symmetry codes: (ii) -x+1/2, -y+1/2, -z; (iii) -x, -y, -z; (iv) -x+1/2, y-1/2, -z+1/2; (v) x, -y+1, z+1/2.

Fig. 1